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Abstract. The number of malware is growing extraordinarily fast. Therefore, it
is important to have efficient malware detectors. Malware writers try to obfus-
cate their code by different techniques. Many of these well-known obfuscation
techniques rely on operations on the stack such as inserting dead code by adding
useless push and pop instructions, or hiding calls to the operating system, etc.
Thus, it is important for malware detectors to be able to deal with the program’s
stack. In this paper we propose a new model-checking approach for malware de-
tection that takes into account the behavior of the stack. Our approach consists
in : (1) Modeling the program using a Pushdown System (PDS). (2) Introducing
a new logic, called SCTPL, to represent the malicious behavior. SCTPL can be
seen as an extension of the branching-time temporal logic CTL with variables,
quantifiers, and predicates over the stack. (3) Reducing the malware detection
problem to the model-checking problem of PDSs against SCTPL formulas. We
show how our new logic can be used to precisely express malicious behaviors that
could not be specified by existing specification formalisms. We then consider the
model-checking problem of PDSs against SCTPL specifications. We reduce this
problem to emptiness checking in Symbolic Alternating Büchi Pushdown Sys-
tems, and we provide an algorithm to solve this problem. We implemented our
techniques in a tool, and we applied it to detect several viruses. Our results are
encouraging.

1 Introduction

To identify viruses, existing antivirus systems use either code emulation or signature
(pattern) detection. These techniques have some limitations. Indeed, emulation based
techniques can only check the program’s behavior in a limited time interval, whereas
signature based systems are easy to get around. To sidestep these limitations, instead of
executing the program or making a syntactic check over it, virus detectors need to use
analysis techniques that check the behavior (not the syntax) of the program in a static
way, i.e. without executing it. Towards this aim, we propose in this paper to use model-
checking for virus detection. Model-checking has already been used for virus detection
in [6, 20, 9, 11, 16, 15, 17]. However, these works model the program as a finite state
graph (automaton). Thus, they are not able to model the stack of the programs, and
cannot track the effects of the push, pop and call instructions. However, as decribed
in [19], many obfuscation techniques rely on operations over the stack. Indeed, many
antivirus systems determine whether a program is malicious by checking the calls it
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makes to the operating system. Hence, several virus writers try to hide these calls by
replacing them by push and return instructions [19]. Therefore, it is important to have
analysis techniques that can deal with the program stack.

We propose in this paper a novel model-checking technique for malware detection
that takes into account the behavior of the stack. Our approach consists in modeling the
program using a pushdown system (PDS), and defining a new logic, called SCTPL, to
express the malicious behavior.

Using pushdown systems as program model allows to consider the program stack. In
our modeling, the PDS control locations correspond to the program’s control points, and
the PDS stack mimics the program’s execution stack. This allows the PDS to mimic the
behavior of the program. This is different from standard program translations to PDSs
where the control points of the program are stored in the stack [13, 5]. These standard
translations assume that the program follows a standard compilation model, where the
return addresses are never modified. We do not make such assumptions since behaviors
where the return addresses are modified can occur in malicious code. We only make
the assumption that pushes and pops can be done only using push, pop, call, and return
operations, not by manipulating the stack pointer.

The logic SCTPL that we introduce is an extension of the CTPL logic that allows
to use predicates over the stack. CTPL was introduced in [16, 15, 17]. It can be seen
as an extension of CTL with variables and quantifiers. In CTPL, propositions can be
predicates of the form p(x1, . . . , xn), where the xi’s are free variables or constants. Free
variables can get their values from a finite domain. Variables can be universally or
existentially quantified. CTPL is as expressive as CTL, but it allows a more succinct
specification of the malicious behavior. For example, consider the statement “The value
data is assigned to some register, and later, the content of this register is pushed onto
the stack.” This statement can be expressed in CTL as a large formula enumerating all
the possible registers:

EF
(
mov(eax, data) ∧ AF push(eax)

)∨
EF
(
mov(ebx, data) ∧ AF push(ebx)

)∨
EF
(
mov(ecx, data) ∧ AF push(ecx)

) ∨ ...
where every instruction is regarded as a predicate, i.e., mov(eax, data) is a predicate.
However, the CTL formula is large for such a simple statement. Using CTPL, this can
be expressed by the CTPL formula ∃r EF

(
mov(r, data)∧AF push(r)

)
which expresses

in a succinct way that there exists a register r such that the above holds. [16, 15, 17]
show how this logic is adequate to specify some malicious behaviors. However, CTPL
does not allow to specify properties about the stack (which is important for malicious
code detection as explained above).

For example, consider Figure 1(a). It corresponds to a critical fragment of the



Email-worm Avron [14] that shows the typical behavior of
an email worm: it calls an API function GetModuleHan-
dleA with 0 as its parameter. This allows to get the entry
address of its own executable so that later, it can infect oth-
er files by copying this executable into them. (Parameters
to a function in assembly are passed by pushing them onto
the stack before a call to the function is made. The code in
the called function later retrieves these parameters from the
stack.) Using CTPL, we can specify this malicious behavior
by the following formula:

l1: mov eax,0

l2: push eax

l3: call ds:GetModuleHandleA

(a)

(b)

l
′

1: mov eax,0

l
′

2: push eax

l
′

3: push ebx

l
′

4: pop ebx

l
′

5: call ds:GetModuleHandleA

Fig. 1. (a) Worm fragment;
(b) Obfuscated fragment.

∃ r1 EF
(
mov(r1, 0) ∧ EX E

[¬∃r2 mov(r1, r2) U
(
push(r1)∧

EX E[¬∃ r3 (push(r3) ∨ pop(r3)) U call(GetModuleHandleA)]
)])
. (1)

This formula states that there exists a register r1 assigned by 0 such that the value of
r1 is not modified until it is pushed onto the stack. Later the stack is not changed until
function GetModuleHandleA is called. This specification can detect the fragment in
Figure 1(a). However, a worm writer can easily use some obfuscation techniques in
order to escape this specification. For example, let us introduce one push followed by
one pop after push eax at line l2 as done in Figure 1(b). By doing so, this fragment
keeps the same malicious behavior than the fragment in Figure 1(a). However, it cannot
be detected by the above CTPL formula. Since the number of pushes and pops that can
be added by the worm writer can be arbitrarily large, it is always possible for worm
developers to change their code in order to escape a given CTPL formula.

To overcome this problem, we introduce the SCTPL logic which extends CTPL by
predicates over the stack. Such predicates are given by regular expressions over the
stack alphabet and some free variables (which can also be existantially and universally
quantified). Using our new logic SCTPL, the malicious behavior of Figures 1(a) and (b)
can be specified as follows:

ψ = ∃r1 EF
(
mov(r1, 0) ∧ EX E

[¬∃r2 mov(r1, r2)U
(
push(r1) ∧ EX E[¬

(
push(r1)

∨(∃r3(pop(r3) ∧ r1Γ
∗)
))

U (call(GetModuleHandleA) ∧ r1Γ
∗)]
)])

(2)

where r1Γ
∗ is a regular predicate expressing that the topmost symbol of the stack is r1.

The SCTPL formula ψ states that there exists a register r1 assigned by 0 such that the
value of r1 is not changed until it is pushed onto the stack. Then, r1 is never pushed
onto the stack again nor popped from it until the function GetModuleHandleA is called.
When this call is made, the topmost symbol of the stack has to be r1. This ensures
that GetModuleHandleA is called with 0 as parameter. This specification can detect
both fragments in Figure 1, because it allows to specify the content of the stack when
GetModuleHandleA is called. Note that it is important to use pushdown systems as
model in order to have specifications with predicates over the stack.

The main contributions of this paper are:

1. We present a new technique to translate a binary program into a pushdown system
that mimics the program’s behavior (a malicious program is usually an executable,
i.e., a binary program). Our translation is different from standard program transla-
tions to PDSs that need to assume that the program follows a standard compilation



model, where the return addresses are never modified. Our translation does not need
to make this assumption since malicious code may have a non standard form.

2. We introduce the SCTPL logic and show how it can be used to efficiently and
precisely characterize malicious behaviors.

3. We propose an algorithm for model checking pushdown systems against SCTPL
specifications. We reduce this problem to checking emptiness in Symbolic Alter-
nating Büchi Pushdown Systems (SABPDS) and we propose an algorithm to solve
this emptiness problem.

4. We implemented our techniques in a tool that we successfully applied to detect
several viruses.

Related work. Model-checking and static analysis techniques have been applied to
detect malicious behaviors e.g. in [6, 20, 9, 11, 16, 15, 17]. However, all these works are
based on modeling the program as a finite-state system, and thus, they miss the behavior
of the stack. As we have seen, being able to track the stack is important for many
malicious behaviors. [7] use tree automata to represent a set of malicious behaviors.
However, [7] cannot specify predicates over the stack content.

[19] keeps track of the stack by computing an abstract stack graph which finitely
represents the infinite set of all the possible stacks for every control point of the pro-
gram. Their technique can detect only obfuscated calls and obfuscated returns. Using
SCTPL, we are able to detect more malicious behaviors.

[18] performs context-sensitive analysis of call and ret obfuscated binaries. They
use abstract interpretation to compute an abstraction of the stack. We believe that our
techniques are more precise since we do not abstract the stack. Moreover, the tech-
niques of [18] were only tried on toy examples, they have not been applied for malware
detection.

[5] uses pushdown systems for binary code analysis. However, [5] has not been
applied for malware detection. Moreover, the translation from programs to PDSs in [5]
assumes that the program follows a standard compilation model where calls and returns
match. Several malicious behaviors do not follow this model. Our translation from a
control flow graph to a PDS does not make this assumption.

[10] defines a language for specifying malicious behavior in terms of dependences
between system calls. Compared to SCTPL, the specification language of [10] does not
take the stack into account and is only able to express safety properties (no CTL like
properties), whereas SCTPL does. On the other hand, [10] is able to automatically de-
rive the malicious specifications by comparing the execution behavior of a known mal-
ware against the execution behaviors of a set of benign programs. It would be interesting
to see if their techniques can be extended to automatically derive SCTPL specifications
of malicious behaviors.

LTL or CTL model-checking with regular predicates over the stack was considered
in [12, 21]. These works do not consider variables and quantifiers.
Outline. We give our formal model in Section 2. In Section 3, we introduce our SCTPL
logic. Our SCTPL model checking algorithm for pushdown systems is given in Section
4. The experiments we made for malware detection are reported in Section 5.



2 Formal model: Pushdown Systems
We model a binary code by a pushdown system (PDS). In our modeling, the PDS control
locations correspond to the program’s control points, and the PDS stack mimics the
program’s execution stack. This is different from standard program translations to PDSs
where the control points of the program are stored in the stack [13, 5]. These standard
translations assume that the program follows a standard compilation model, where the
return addresses are never modified. We do not make such assumptions since behaviors
where the return addresses are modified can occur in malicious code. We only make
the assumption that pushes and pops can be done only using push, pop, call, and return
operations, not by manipulating the stack pointer.

Formally, a Pushdown System (PDS) is a tuple P = (P, Γ, ∆, ♯), where P is a finite
set of control locations, Γ is the stack alphabet, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of
transition rules, and ♯ ∈ Γ is the bottom stack symbol. A configuration of P is ⟨p, ω⟩,
where p ∈ P and ω ∈ Γ∗. If ((p, γ), (q, ω)) ∈ ∆, we write ⟨p, γ⟩ ↪→ ⟨q, ω⟩. For technical
reasons, we assume that the bottom stack symbol ♯ is never popped from the stack, i.e.,
there is no transition rule of the form ⟨p, ♯⟩ ↪→ ⟨q, ω⟩ ∈ ∆.

The successor relation{P⊆ (P × Γ∗) × (P × Γ∗) is defined as follows: if ⟨p, γ⟩ ↪→
⟨q, ω⟩, then ⟨p, γω′⟩ {P ⟨q, ωω′⟩ for every ω′ ∈ Γ∗. For every configuration c, c′ ∈
P × Γ∗, c is a successor of c′ iff c {P c′. A path is a sequence of configurations
c0, c1, ... s.t. ci {P ci+1 for every i ≥ 0.

3 Malicious behavior Specification

In this section, we introduce the Stack Computation Tree Predicate Logic (SCTPL), the
formalism we use to specify malicious behavior.

3.1 Environments, predicates and regular expressions

From now on, we fix the following notations. Let X = {x1, x2, ...} be a finite set of
variables ranging over a finite domain D. Let B : X ∪ D −→ D be an environment
function that assigns a value c ∈ D to each variable x ∈ X, and such that B(c) = c for
every c ∈ D. B[x ← c] denotes the environment function such that B[x ← c](x) = c
and B[x ← c](y) = B(y) for every y , x. Absx(B) is the set of all the environments B′

s.t. for every y , x, B′(y) = B(y). Let B be the set of all the environment functions.
Let AP = {a, b, c, ...} be a finite set of atomic propositions, APX be a finite set of

atomic predicates of the form b(α1, ..., αm) such that b ∈ AP, αi ∈ X ∪ D for every i,
1 ≤ i ≤ m, and APD be a finite set of atomic predicates of the form b(α1, ..., αm) such
that b ∈ AP and αi ∈ D for every i, 1 ≤ i ≤ m.

Let P = (P, Γ, ∆, ♯) be a PDS s.t. Γ ⊆ D. Let R be a finite set of regular variable
expressions e over X ∪ Γ defined by:

e ::= ∅ | ϵ | a ∈ X ∪ Γ | e + e | e · e | e∗

The language L(e) of a regular variable expression e is a subset of P × Γ∗ × B defined
inductively as follows: L(∅) = ∅; L(ϵ) = {(⟨p, ϵ⟩,B) | p ∈ P,B ∈ B}; L(x), where x ∈ X



is the set {(⟨p, γ⟩,B) | p ∈ P, γ ∈ Γ,B ∈ B : B(x) = γ}; L(γ), where γ ∈ Γ is the set
{(⟨p, γ⟩,B) | p ∈ P,B ∈ B}; L(e1 + e2) = L(e1) ∪ L(e1); L(e1 · e2) = {(⟨p, ω1ω2⟩,B) |
(⟨p, ω1⟩,B) ∈ L(e1); (⟨p, ω2⟩,B) ∈ L(e2)}; and L(e∗) = {(⟨p, ω∗⟩,B) | (⟨p, ω⟩,B) ∈
L(e)}. E.g., (⟨p, γ1γ1γ2⟩,B) is an element of L(x∗γ2) when B(x) = γ1.

3.2 Stack Computation Tree Predicate Logic

We are now ready to define our new logic SCTPL. Intuitively, a SCTPL formula is
a CTL formula where predicates and regular variable expressions are used as atomic
propositions. Using regular variable expressions allows to express predicates on the
stack content of the PDS. Moreover, since predicates and regular variable expressions
contain variables, we allow quantifiers over variables. For technical reasons, we suppose
w.l.o.g. that formulas are given in positive normal form, i.e., negations are applied only
to atomic propositions. Indeed, each CTL formula can be written in positive normal
form by pushing the negations inside. Moreover, we use the operator Ũ as a dual of
the until operator for which the stop condition is not required to occur. Then, standard
CTL operators can be expressed as follows: EFψ = E[trueUψ], AFψ = A[trueUψ],
EGψ = E[ f alseŨψ] and AGψ = A[ f alseŨψ].

More precisely, the set of SCTPL formulas is given by (where x ∈ X, a(x1, ..., xn) ∈
APX and e ∈ R):

φ ::= a(x1, ..., xn) | ¬a(x1, ..., xn) | e | ¬e | φ ∧ φ | φ ∨ φ | ∀x φ
| ∃x φ | AXφ | EXφ | A[φUφ] | E[φUφ] | A[φŨφ] | E[φŨφ]

Let φ be a SCTPL formula. The closure cl(φ) denotes the set of all the subfor-
mulas of φ including φ. The size |φ| of φ is the number of elements of cl(φ). Let
AP+(φ) = {a(x1, ..., xn) ∈ APX | a(x1, ..., xn) ∈ cl(φ)}, AP−(φ) = {a(x1, ..., xn) ∈ APX |
¬a(x1, ..., xn) ∈ cl(φ)}, Reg+(φ) = {e ∈ R | e ∈ cl(φ)}, Reg−(φ) = {e ∈ R | ¬e ∈ cl(φ)},
and clŨ(φ) be the set of formulas of cl(φ) in the form of E[φ1Ũφ2] or A[φ1Ũφ2].

Given a PDSP = (P, Γ, ∆, ♯) s.t. Γ ⊆ D, let λ : APD → 2P be a labeling function that
assigns a set of control locations to a predicate. Let c = ⟨p,w⟩ be a configuration of P.
P satisfies a SCTPL formula ψ in c, denoted by c |=λ ψ, iff there exists an environment
B ∈ B s.t. c |=B

λ ψ, where c |=B
λ ψ is defined by induction as follows:

– c |=B
λ a(x1, ..., xn) iff p ∈ λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ ¬a(x1, ..., xn) iff p < λ

(
a
(
B(x1), ...,B(xn)

))
.

– c |=B
λ e iff (c,B) ∈ L(e).

– c |=B
λ ¬e iff (c,B) < L(e).

– c |=B
λ ψ1 ∧ ψ2 iff c |=B

λ ψ1 and c |=B
λ ψ2.

– c |=B
λ ψ1 ∨ ψ2 iff c |=B

λ ψ1 or c |=B
λ ψ2.

– c |=B
λ ∀x ψ iff ∀v ∈ D, c |=B[x←v]

λ ψ.
– c |=B

λ ∃x ψ iff ∃v ∈ D s.t. c |=B[x←v]
λ ψ.

– c |=B
λ AX ψ iff c′ |=B

λ ψ for every successor c′ of c.
– c |=B

λ EX ψ iff there exists a successor c′ of c s.t. c′ |=B
λ ψ.

– c |=B
λ A[ψ1Uψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∃i ≥ 0 s.t.

ci |=B
λ ψ2 and ∀0 ≤ j < i : c j |=B

λ ψ1.



– c |=B
λ E[ψ1Uψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∃i ≥

0, ci |=B
λ ψ2 and ∀0 ≤ j < i, c j |=B

λ ψ1.
– c |=B

λ A[ψ1Ũψ2] iff for every path π = c0, c1, ..., of P with c0 = c, ∀i ≥ 0 s.t.
ci ̸|=B

λ ψ2, ∃0 ≤ j < i s.t. c j |=B
λ ψ1.

– c |=B
λ E[ψ1Ũψ2] iff there exists a path π = c0, c1, ..., of P with c0 = c s.t. ∀i ≥ 0 s.t.

ci ̸|=B
λ ψ2, ∃0 ≤ j < i s.t. c j |=B

λ ψ1.

Intuitively, c |=B
λ ψ holds iff the configuration c satisfies the formula ψ under the envi-

ronment B. Note that a path π satisfies ψ1Ũψ2 iff either ψ2 holds everywhere in π, or
the first occurrence in the path where ψ2 does not hold must be preceeded by a position
where ψ1 holds.

3.3 Modeling malicious behaviors using SCTPL

SCTPL can be used to precisely specify several malicious behaviors. We needed stack
predicates to express most of the specifications. Thus, SCTPL is necessary to specify
these behaviors, CTPL is not sufficient. We describe here how e.g., email worms can be
specified using SCTPL. The typical behavior of an email worm can be summarized as
follows: the worm will first call the API GetModuleFileNameA in order to get the name
of its executable. For this, the worm needs to call this function with 0 and m as parame-
ters (m corresponds to the address of a memory location), i.e., with 0m on the top of the
stack since parameters to a function in assembly are passed through the stack. GetMod-
uleFileNameA will then write the name of the worm executable on the address m. Then,
the worm will copy its file (whose name is at the address m) to other locations using the
function CopyFileA. It needs to call CopyFileA with m as parameter, i.e., with m on the
top of the stack. Figure 2(a) shows a disassembled fragment of a code corresponding to
this typical behavior. This behavior can be expressed by the SCTPL formula of Figure
2(b). In this formula, Line 2 expresses that there exists a register r0 such that the address
of the memory location m is assigned to r0, and such that the value of r0 does not change
until it is pushed onto the stack (subformula ¬∃v(mov(r0, v) ∨ lea(r0, v)) Upush(r0)).
Line 3 guarantees that r0 is not pushed nor popped from the stack until GetModuleFile-
NameA is called, and 0r0 is on the top of the stack (the predicate 0r0Γ

∗ ensures this).
This guarantees that when GetModuleFileNameA is called, r0 still contains the address
of m. Thus, the name of the worm file returned by GetModuleFileNameA will be put at
the address m. Line 4 is similar to Line 2. It expresses that there exists a register r1 such
that the address of the memory location m is assigned to r1, and such that the value of r1
does not change until it is pushed onto the stack. This guarantees that when r1 is pushed
to the stack, it contains the address of m. Line 5 expresses that r1 is not pushed nor
popped from the stack until CopyFileA is called, and r1 is on the top of the stack (the
predicate r1Γ

∗ ensures this). This guarantees that when CopyFileA is called, the value
of r1 is still m. Thus, CopyFileA will copy the file whose name is at the address m. Note
that we need predicates over the stack to express in a precise manner this specification.

4 SCTPL Model-Checking for Pushdown Systems
In this section, we give an efficient SCTPL model checking algorithm for Pushdown
systems. Our procedure works as follows: we reduce this model checking problem to the



...

lea eax, [ebp+ ExistingF ileName]
push eax

push 0
call ds : GetModuleF ileNameA

...

lea eax, [ebp+ ExistingF ileName]
push eax

call ds : CopyF ileA

...

(a)

1. ψew = ∃m

(

∃r0

(

2. EF
(

lea(r0,m) ∧EX E

[

¬∃v(mov(r0, v) ∨ lea(r0, v))U
(

push(r0)

3. ∧EX E[¬(push(r0) ∨ ∃v(pop(v) ∧ r0Γ
∗))U(call(GetModuleF ileNameA) ∧ 0 r0Γ

∗

4. ∧ ∃r1
(

EF(lea(r1,m) ∧EX E[¬∃v(mov(r1, v) ∨ lea(r1, v))U(push(r1)

5. ∧EX E[¬(push(r1) ∨ ∃v(pop(v) ∧ r1Γ
∗))Ucall(CopyF ileA) ∧ r1Γ

∗])])
)

)]
)

]

)

)

)

(b)

Fig. 2. (a) Email worm (b) Specification of Email worm

emptiness problem in Symbolic Alternating Büchi Pushdown Systems (SABPDS), and
we give an algorithm to solve this emptiness problem. To achieve this reduction, we use
variable automata to represent regular variable expressions. This section is structured
as follows. First, we introduce variable automata. Then, we define Symbolic Alternating
Büchi Pushdown Systems. Next, we show how SCTPL model checking for PDSs can
be reduced to emptiness checking of SABPDSs.

In the remainder of this section, we let X be a finite set of variables ranging over a
finite domainD, and B be the set of all the environment functions B : X ∪D −→ D.

4.1 Variable Automata

Given a PDS P = (P, Γ, ∆, ♯) s.t. Γ ⊆ D, a Variable Automaton (VA) is a tuple M =
(Q, Γ, δ, q0, A), where Q is a finite set of states; Γ is the input alphabet; q0 ⊆ Q is an
initial state; A ⊆ Q is a finite set of accepting states; and δ is a finite set of transition
rules of the form: p

α−→ {q1, ..., qn} where α can be x, ¬x, or γ, for any x ∈ X and γ ∈ Γ.
Let B ∈ B. A run of VA on a word γ1, ..., γm under B is a tree of height m whose

root is labelled by the initial state q0, and each node at depth k labelled by a state q has
h children labelled by p1, ..., ph, respectively, such that: either q

γk−→ {p1, ..., ph} ∈ δ and
γk ∈ Γ; or q

x−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) = γk; or q
¬x−→ {p1, ..., ph} ∈ δ, x ∈ X

and B(x) , γk. A branch of the tree is accepting iff the leaf of the branch is an accepting
state. A run is accepting iff all its branches are accepting. A word ω ∈ Γ∗ is accepted
by a VA under an environment B ∈ B iff the VA has an accepting run on the word ω
under the environment B. The language of a VA M, denoted by L(M), is a subset of
(P×Γ∗)×B. (⟨p, ω⟩,B) ∈ L(M) iff M accepts the word ω under the environment B. We
can show that:

Theorem 1. VAs are effectively closed under boolean operations.

Theorem 2. For every regular expression e ∈ R, one can effectively compute in poly-
nomial time a VA M such that L(M) = L(e).

4.2 Symbolic Alternating Büchi Pushdown Systems

Definition 1. A Symbolic Alternating Büchi Pushdown System (SABPDS) is a tuple
BP = (P, Γ, ∆, F), where P is a finite set of control locations; Γ ⊆ D is the stack



alphabet; F ⊆ P × 2B is a set of accepting states; ∆ is a finite set of transitions of the

form ⟨p, γ⟩ ℜ↪→ [⟨p1, ω1⟩, ..., ⟨pn, ωn⟩] where p ∈ P, γ ∈ Γ, for every i, 1 ≤ i ≤ n: pi ∈ P,
ωi ∈ Γ∗, and ℜ : (B)n −→ 2B is a function that maps a tuple of environments to a set
of environments.

A configuration of a SABPDS is a tuple ⟨[p,B], ω⟩, where p ∈ P is a con-
trol location, B ∈ B is an environment and ω ∈ Γ∗ is the stack content. [p,B] ∈
P × B is an accepting state iff ∃[p, β] ∈ F s.t. B ∈ β. Let t = ⟨p, γ⟩ ℜ

↪→
[⟨p1, ω1⟩, ..., ⟨pn, ωn⟩] ∈ ∆ be a transition, n is the width of the transition t. For
every ω ∈ Γ∗, B,B1, ...,Bn ∈ B, if B ∈ ℜ(B1, ...,Bn), then the configuration
⟨[p,B], γω⟩ (resp. {⟨[p1,B1], ω1ω⟩, ..., ⟨[pn,Bn], ωnω⟩}) is an immediate predecessor
(resp. immediate successor) of {⟨[p1,B1], ω1ω⟩, ..., ⟨[pn,Bn], ωnω⟩} (resp. ⟨[p,B], γω⟩).
A run ρ of BP from an initial configuration ⟨[p0,B0], ω0⟩ is a tree in which the
root is labeled by ⟨[p0,B0], ω0⟩, and the other nodes are labeled by elements of
(P × B) × Γ∗. If a node of ρ labeled by ⟨[p,B], ω⟩ has n children labeled by
⟨[p1B1], ω1⟩, ..., ⟨[pn,Bn], ωn⟩, respectively, then, necessarily, ⟨[p,B], ω⟩ is an immedi-
ate predecessor of {⟨[p1,B1], ω1⟩, ..., ⟨[pn,Bn], ωn⟩} in BP.

A path c0c1... of a run ρ is an infinite sequence of configurations where c0 is the
root of ρ and for every i ≥ 0, ci+1 is one of the children of the node ci in ρ. The path
is accepting iff it visits infinitely often configurations with accepting states. A run ρ
is accepting iff all its paths are accepting. Note that an accepting run has only infinite
paths. A configuration c is accepted (or recognized) by BP iff BP has an accepting run
starting from c. The language of BP, denoted by L(BP), is the set of configurations
accepted by BP.

The predecessor functions PreBP, Pre∗BP and Pre+BP : 2(P×B)×Γ∗ −→
2(P×B)×Γ∗ are defined as follows: PreBP(C) = {c ∈ (P × B) × Γ∗ |
some immediate successor of c is a subset of C}, Pre∗BP is the reflexive and transitive
closure of PreBP, PreBP ◦ Pre∗BP is denoted by Pre+BP.

SABPDS vs. ABPDS. An Alternating Büchi Pushdown System (ABPDS for short) [21]
can be seen as a SABPDS:

Lemma 1. Given a SABPDSBP = (P, Γ, ∆, F), one can compute an equivalent ABPDS
BP′ that simulates BP in O(|∆| · |B|k+1) time, where k is the maximum of the widths of
the transition rules in ∆ and |B| = |D||X|.

Symbolic Alternating Multi-Automata. To finitely represent infinite sets of configu-
rations of SABPDSs, we use Symbolic Alternating Multi-Automata.

Let BP = (P, Γ, ∆, F) be a SABPDS, a Symbolic Alternating Multi-Automaton
(SAMA) is a tuple A = (Q, Γ, δ, I,Q f ), where Q is a finite set of states, Γ is the in-
put alphabet, δ ⊆ (Q×Γ)× 2Q is a finite set of transition rules, I ⊆ P× 2B is a finite set
of initial states, Q f ⊆ Q is a finite set of final states. An Alternating Multi-Automaton
(AMA) is a SAMA such that I ⊆ P × {∅}.

We define the reflexive and transitive transition relation −→δ⊆ (Q × Γ∗) × 2Q as
follows: (1) q

ϵ−→δ {q} for every q ∈ Q, where ϵ is the empty word, (2) if q
γ
−→



{q1, ..., qn} ∈ δ and qi
ω−→δ Qi for every 1 ≤ i ≤ n, then q

γω
−→δ

∪n
i=1 Qi. The automaton

A recognizes a configuration ⟨[p,B], ω⟩ iff there exist Q′ ⊆ Q f and β ⊆ B s.t. B ∈ β,
[p, β] ∈ I and [p, β]

ω−→δ Q′. The language of A, denoted by L(A), is the set of
configurations recognized byA. A set of configurations is regular if it can be recognized
by a SAMA. Similarly, AMAs can also be used to recognize (infinite) regular sets of
configurations for ABPDSs.

Proposition 1. Let A = (Q, Γ, δ, I,Q f ) be a SAMA. Then, deciding whether a config-
uration ⟨[p,B], ω⟩ is accepted by A can be done in O(|Q| · |δ| · |ω| + τ) time, where τ
denotes the time used to check whether B ∈ β for some B ∈ B, β ⊆ B.

Remark 1. The time τ used to check whether B ∈ β depends on the representation
of B and β. In particular, if we use BDDs to represent sets of environment functions,
checking whether B ∈ β can be done in τ = O(⌈log|D|⌉ · |X|) [8].

Computing the language of an SABPDS. We can extend the algorithm of [21] that
computes an AMA that recognizes the language of an ABPDS to obtain an algorithm
that computes the language of an SABPDS. More precisely:

Theorem 3. Let BP = (P, Γ, ∆, F) be a SABPDS, then we can compute a SAMAA that
recognizes L(BP) in O

(
|P|2 · 22|B| · |Γ| · |∆| · 25|P|·2|B|

)
time.

Remark 2. Note that another way to compute L(BP) is to apply Lemma 1 and produce
an equivalent ABPDS BP′ that simulates BP, and then apply the algorithm of [21]
to compute an AMA that recognizes L(BP′). In practice, in the symbolic case (for
SABPDS), the sets of environments β’s can be compactly represented using BDDs for
example, whereas in the explicit case (for ABPDS), all the environments B’s have to be
considered. Thus, the algorithm behind Theorem 3 will behave better in practice. This
is confirmed by the experiments we run where, in the majority of cases, this algorithm
terminates in few seconds, whereas if we compute an equivalent ABPDS and apply the
algorithm of [21], we run out of memory.

Examples of functionsℜ. We give some examples of functionsℜ that will be used.

– equal(B1, ...,Bn) =
{
{B1} if Bi = B j for every 1 ≤ i, j ≤ n, or n = 1
∅ otherwise.

This function checks that all the Bi’s are equal and returns {B1} (which is equal to
{Bi} for any i) if this is the case and the emptyset otherwise.

– meetx
{c1,...,cn}(B1, ..., Bn) =


Absx(B1) if Bi(x) = ci and Bi(y) = B j(y) for y , x,

for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) = ci for every i, 1 ≤ i ≤ n, and for every y , x
and every i, j, 1 ≤ i, j ≤ n Bi(y) = B j(y). It returns Absx(B1) (which is equal to
Absx(Bi) for any i) if this is the case and the emptyset otherwise.



– joinx
c(B1, ...,Bn) =

{
{B1} if Bi = B j and Bi(x) = c, for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) = c for every i. If this is the case, it returns
equal(B1, ...,Bn), otherwise, it returns the emptyset.

– join¬x
c (B1, ...,Bn) =

{
{B1} if Bi = B j and Bi(x) , c, for every 1 ≤ i, j ≤ n,
∅ otherwise.

This function checks whether Bi(x) , c for every i. If this is the case, it returns
equal(B1, ...,Bn), otherwise, it returns the emptyset.

4.3 From SCTPL Model Checking for PDSs to Emptiness of SABPDS

Let P = (P, Γ, ∆, ♯), λ : APD → 2P be a labeling function, and φ be a SCTPL formu-
la. For every configuration ⟨p, ω⟩, our goal is to determine whether ⟨p, ω⟩ |=λ φ, i.e.,
whether there exists an environment B ∈ B s.t. ⟨p, ω⟩ |=B

λ φ. We proceed as follows:
we compute a symbolic alternating Büchi pushdown system BP s.t. ⟨p, ω⟩ |=B

λ φ iff
⟨[Lp, φM,B], ω⟩ ∈ L(BP). Then, ⟨p, ω⟩ |=λ φ iff there exists B ∈ B such that ⟨p, ω⟩ |=B

λ φ.
Let Reg+(φ) = {e1, ..., ek} and Reg−(φ) = {ek+1, ..., em} be the two sets of regular

variable expressions1 that occur in φ. As shown in Theorems 2 and 1, for every i, 1 ≤
i ≤ k we can construct VAs Mei = (Qei , Γ, δei , sei , Aei ) such that L(Mei ) = L(ei); and
for every j, k < j ≤ m we can construct VAs M¬e j = (Q¬e j , Γ, δ¬e j , s¬e j , A¬e j ) such that
L(M¬e j ) = (P×Γ∗)×B\L(e j). We suppose w.l.o.g. that the states of these automata are
distinct. LetM be the union of all these automata, F be the union of all the final states
of these automata Aei ’s and A¬e j ’s and S be the union of all the states of these automata
Qei ’s and Q¬e j ’s.

Let BPφ = (P′, Γ, ∆′, F) be the SABPDS defined as follows: P′ = P × cl(φ) ∪ S;
F = F1∪F2∪F3∪F4, where F1 = {[Lp, a(x1, ..., xn)M, β] | a(x1, ..., xn) ∈ AP+(φ) and β =
{B ∈ B | p ∈ λ

(
a
(
B(x1), ..., B(xn)

))}}; F2 = {[Lp,¬a(x1, ..., xn)M, β] | ¬a(x1, ..., xn) ∈
AP−(φ) and β = {B ∈ B | p < λ

(
a
(
B(x1), ..., B(xn)

))}}; F3 = P × clŨ(φ) × {B}; and
F4 = F × {B}.
∆′ is the smallest set of transition rules that satisfy the following. For every control
location p ∈ P, every subformula ψ ∈ cl(φ), and every γ ∈ Γ:

1. if ψ = a(x1, ..., xn) or ψ = ¬a(x1, ..., xn); ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψM, γ⟩ ∈ ∆′;

2. if ψ = ψ1 ∧ ψ2; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp, ψ2M, γ⟩] ∈ ∆′;

3. if ψ = ψ1 ∨ ψ2; ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψ1M, γ⟩ ∈ ∆′ and ⟨Lp, ψM, γ⟩ equal

↪→ ⟨Lp, ψ2M, γ⟩ ∈ ∆′;
4. if ψ = ∃x ψ1; ⟨Lp, ψM, γ⟩ meetx

{c}
↪−−−→ ⟨Lp, ψ1M, γ⟩ ∈ ∆′, for every c ∈ D;

5. if ψ = ∀x ψ1; ⟨Lp, ψM, γ⟩ meetx
D

↪−−−→ [⟨Lp, ψ1M, γ⟩, · · · , ⟨Lp, ψ1M, γ⟩] ∈ ∆′, where ⟨Lp, ψ1M, γ⟩ is
repeated m times in [⟨Lp, ψ1M, γ⟩, · · · , ⟨Lp, ψ1M, γ⟩], where m is the number of elements inD;

6. if ψ = EXψ1; ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp′, ψ1M, ω⟩ ∈ ∆′ for every ⟨p, γ⟩ ↪→ ⟨p′, ω⟩ ∈ ∆;

7. if ψ = AXψ1; ⟨Lp, ψ)M, γ⟩ equal
↪−−→ [⟨Lp1, ψ1M, ω1⟩, . . . , Lpl, ψ1M, ωl⟩] ∈ ∆′ such that for every i,

1 ≤ i ≤ l, ⟨p, γ⟩ ↪→ ⟨pi, ωi⟩ ∈ ∆ and these transitions are all the transitions of ∆ that have
⟨p, γ⟩ as left hand side;

1 AP+(φ), AP−(φ), Reg+(φ) and Reg−(φ) are as defined in Section 3.2.



8. if ψ = E[ψ1Uψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp′, ψM, ω⟩] ∈ ∆′ for every rule ⟨p, γ⟩ ↪→

⟨p′, ω⟩ ∈ ∆, and ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψ2M, γ⟩ ∈ ∆′;

9. if ψ = A[ψ1Uψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp1, ψM, ω1⟩, ..., ⟨Lpl, ψM, ωl⟩] ∈ ∆′ such that

for every i, 1 ≤ i ≤ l, ⟨p, γ⟩ ↪→ ⟨pi, ωi⟩ ∈ ∆ and these transitions are all the transitions of ∆

that have ⟨p, γ⟩ as left hand side, and ⟨Lp, ψM, γ⟩ equal
↪→ ⟨Lp, ψ2M, γ⟩ ∈ ∆′;

10. if ψ = E[ψ1Ũψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ2M, γ⟩, ⟨Lp′, ψM, ω⟩] ∈ ∆′ for every ⟨p, γ⟩ ↪→

⟨p′, ω⟩ ∈ ∆, and ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ2M, γ⟩, ⟨Lp, ψ1M, γ⟩] ∈ ∆′;

11. if ψ = A[ψ1Ũψ2]; ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ2M, γ⟩, ⟨Lp1, ψM, ω1⟩, ..., ⟨Lpl, ψM, ωl⟩] ∈ ∆′ such that

for every i, 1 ≤ i ≤ l, ⟨p, γ⟩ ↪→ ⟨pi, ωi⟩ ∈ ∆ and these transitions are all the transitions of ∆

that have ⟨p, γ⟩ as left hand side, and ⟨Lp, ψM, γ⟩ equal
↪−−→ [⟨Lp, ψ1M, γ⟩, ⟨Lp, ψ2M, γ⟩] ∈ ∆′;

12. if ψ = e: ⟨Lp, ψM, γ⟩ equal
↪→ ⟨se, γ⟩ ∈ ∆′, where se is the initial state of Me,

13. if ψ = ¬e: ⟨Lp, ψM, γ⟩ equal
↪→ ⟨s¬e, γ⟩ ∈ ∆′, where s¬e is the initial state of M¬e,

14. for every transition q
α−→ {q1, ..., qn} inM; ⟨q, γ⟩ ℜ↪→ {⟨q1, ϵ⟩, ..., ⟨qn, ϵ⟩} ∈ ∆′, where

(a) ℜ = equal if α = γ,
(b) ℜ = joinx

γ if α = x ∈ X,
(c) ℜ = join¬x

γ if α = ¬x and x ∈ X,

15. for every q ∈ F ; ⟨q, ♯⟩
equal
↪→ ⟨q, ♯⟩ ∈ ∆′.

Roughly speaking, BPφ could be seen as the product of P and φ. BPφ recognizes
all the configurations ⟨[Lp, ψM,B], ω⟩ s.t. ⟨p, ω⟩ satisfies ψ under B. Thus BPφ has an
accepting run from ⟨[Lp, ψM,B], ω⟩ if and only if the configuration ⟨p, ω⟩ satisfies ψ
under B. Due to lack of space, we only explain the case ψ = e. In this case, the SABPDS
BPφ accepts ⟨[Lp, ψM,B], ω⟩ iff (⟨p, ω⟩,B) ∈ L(Me). To check this, BPφ first goes to
state [se,B] by Item 12, where se is the initial state of Me, then it continues to check
whether ω is accepted by Me under the environment B. This is ensured by Items 14.
Item 14 allows BPφ to mimic a run of Me on ω under the environment B: if BPφ is in
state [q,B] and the topmost symbol of its stack is γ, then:

– Item 14(a) deals with the case where q
γ
−→ {q1, ..., q2} is a transition in δe. In this

case, BPφ moves to the next states [q1,B], ..., [qn,B] while popping γ from the
stack. Popping γ allows BPφ to check the rest of the word. The function equal
guarantees that all the environments are the same.

– Item 14(b) deals with the case where q
x−→ {q1, ..., q2}, x ∈ X is a transition in

δe. In this case, BPφ can continue to mimic a run of Me under the environment B
only if B(x) = γ. If this holds, BPφ moves to the next states [q1,B], ..., [qn,B] and
pops γ from the stack, which allows BPφ to check the rest content of the stack. The
function joinx

γ ensures that all the environments are the same and the value of B(x)
is γ.

– Similarly, Item 14(c) deals with the case where q
¬x−→ {q1, ..., q2} is in δe.

Thus, (⟨p, ω⟩,B) ∈ L(Me) iff Me reaches final states f1, ..., fn of Me after reading the
word ω, i.e., iff BPφ reaches a set of states [ f1,B], ..., [ fn,B] with an empty stack (a
stack containing only the bottom stack symbol ♯). This is why F4 is a set of accepting
states. Moreover, since all the accepting paths are infinite, Item 15 adds a loop on every



configuration ⟨[ f ,B], ♯⟩ where f is a final state of M and ♯ is the stack symbol (this
makes the paths of BPφ that reach a state ⟨[ f ,B], ♯⟩ accepting). Formally, we can show:

Theorem 4. Given a PDS P = (P, Γ, ∆, ♯), a function λ : APD −→ 2P, a SCTPL
formula φ, and a configuration ⟨p, ω⟩ of P, we have: for every B ∈ B, ⟨p, ω⟩ |=B

λ φ iff
BPφ has an accepting run from the configuration ⟨[Lp, φM,B], ω⟩.

4.4 SCTPL model-checking for PDSs

Given a PDS P = (P, Γ, ∆, ♯), a labeling function λ, and a SCTPL formula φ, thanks to
Theorems 4 and 3, and due to the fact that BPφ has O(|P| · |φ| + k) states and O((|P| ·
|Γ| + |∆|) · |φ| + d) transitions, where k and d are the number of states and the number of
transitions of the unionM of the Variable Automata involved in φ; we get the following:

Corollary 1. Given a PDS P = (P, Γ, ∆, ♯), a SCTPL formula φ and a labeling function
λ, we can effectively compute a SAMA A in time O

(
(|P||φ| + k)2 · 22|B| · |Γ| · ((|P||Γ| +

|∆|)|φ| + d
) · 25(|P||φ|+k)·2|B|

)
, where k is the number of states ofM and d is the number of

transition rules ofM such that for every configuration ⟨p, ω⟩ of P:

1. ⟨p, ω⟩ |=λ φ iff there exists a B ∈ B s.t.A recognizes ⟨[Lp, φM,B], ω⟩.
2. for every B ∈ B: ⟨p, ω⟩ |=B

λ φ iffA recognizes ⟨[Lp, φM,B], ω⟩.

Thus, thanks to this corollary and to Proposition 1, it follows that it is possible to
determine whether a PDS configuration satisfies a SCTPL formula:

Corollary 2. It is possible to decide whether a PDS configuration satisfies a SCTPL
formula.

Remark 3. We can transform every SCTPL formula ψ to an equivalent CTL with regu-
lar valuations formula ψ′. Then, applying [21], we can construct an AMA recognizing
all the configurations which satisfy ψ′. However, in practice, thanks to the compact rep-
resentation of the sets of environments β’s using BDDs, model-checking SCTPL using
our symbolic techniques behaves much better than reducing SCTPL to CTL with regu-
lar valuations and then applying [21]. Indeed, the experiments we run show that in most
of the cases, our symbolic algorithm for SCTPL model-checking terminates in few sec-
onds, whereas translating the SCTPL formula to CTL with regular valuations and then
applying [21] would run out of memory.

5 Experiments

We implemented our techniques in a tool for malware detection. We use IDAPro [3] as
disassembler. We use BDDs to represent sets of environments. We carried out different
experiments. We obtained interesting results. In particular, our tool was able to detect
several viruses taken from [14]. Our results are reported in Table 1. Column |P| gives
the number of control locations of the PDS model. Every program is checked against
several malicious behaviors. A program is declared as a potential virus if it satisfies one



Examples |P| Our techniques SABPDS→ABPDS SCTPL→CTLr
Result Examples |P| Our techniques SABPDS→ABPDS SCTPL→CTLr

Result
Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb) Time(s) Mem(Mb)

Klez.a 42 1.62 10.8 - MemOut - MemOut Y Adson.1559 52 0.22 2.1 - MemOut - MemOut Y
Klez.b 45 1.55 10.8 - MemOut - MemOut Y Adson.1651 54 0.23 2.1 - MemOut - MemOut Y
Klez.c 41 1.27 8.9 - MemOut - MemOut Y Adson.1703 55 0.25 2.1 - MemOut - MemOut Y
Klez.d 51 1.47 10.3 - MemOut - MemOut Y Adson.1734 54 0.31 2.6 - MemOut - MemOut Y
Klez.e 52 0.77 7.0 - MemOut - MemOut Y Alcaul.d 62 0.20 0.8 - MemOut 47.70 51 Y
Klez.f 50 0.76 7.0 - MemOut - MemOut Y Alcaul.i 88 4.38 0.28 - MemOut 159.88 169.64 Y
Klez.g 47 0.75 7.0 - MemOut - MemOut Y Alcaul.j 79 0.30 2.1 - MemOut 218.25 198.71 Y
Klez.i 49 0.74 7.0 - MemOut - MemOut Y Oroch.3982 89 3.70 7.72 - MemOut - MemOut Y
Klez.j 55 0.74 7.0 - MemOut - MemOut Y KME 145 999.31 20.04 - MemOut - MemOut Y

Mydoom.c 210 145.20 322.8 - MemOut - MemOut Y Anar.a 41 1.16 1.60 885.33 343.24 54.92 34.12 Y
Mydoom.e 288 123.22 267.5 - MemOut - MemOut Y Anar.b 47 1.49 1.60 891.42 348.54 56.14 36.16 Y
Mydoom.g 256 117.50 256.7 - MemOut - MemOut Y Atak.b 126 762.34 18.15 - MemOut - MemOut Y

Predec.j 25 0.23 0.81 - MemOut 56.14 36.16 Y Alcaul.c 33 0.12 0.3 - MemOut 0.41 2.19 Y
Netsky.a 69 2.73 14.5 - MemOut - MemOut Y Bagle.d 88 652.23 16.96 - MemOut - MemOut Y

Akez 42 0.22 0.3 - MemOut 0.44 2.49 Y Alcaul.f 52 0.09 0.3 - MemOut 0.53 2.23 Y
Netsky.b 80 2.73 14.5 - MemOut - MemOut Y Alcaul.b 50 0.06 0.2 - MemOut 0.28 1.18 Y
Netsky.c 78 2.73 14.5 - MemOut - MemOut Y Alcaul.e 49 0.49 0.9 - MemOut 1.03 5.28 Y
Netsky.d 72 2.73 14.5 - MemOut - MemOut Y Alcaul.g 53 0.31 0.7 - MemOut 0.97 4.45 Y
Alcaul.h 48 0.83 0.9 - MemOut 1.14 6.88 Y Evol.a 102 9.58 3.22 - MemOut - MemOut Y
Uedit32 180 92.58 100.94 - MemOut - MemOut N Alcaul.k 52 0.26 0.6 - MemOut 0.76 3.65 Y
Alcaul.l 2 0.30 0.7 - MemOut 0.86 3.96 Y Alcaul.m 53 0.20 0.6 - MemOut 0.88 3.37 Y

Cygwin32 212 23.72 123.31 - MemOut - MemOut N Alcaul.n 34 0.12 0.3 - MemOut 0.44 2.28 Y
cmd.exe 202 1.44 25.52 - MemOut - MemOut N Klinge 78 237.50 4.49 - MemOut 0.83 3.37 Y
Alcaul.o 68 0.20 0.6 - MemOut 0.83 3.37 Y Atak.f 220 23.4 139.1 - MemOut - MemOut Y

Mydoor.ar 256 113.2 227.4 - MemOut - MemOut Y Mydoor.ay 328 124.2 232.5 - MemOut - MemOut Y

Table 1. Detection of real malwares

of the specifications. Column time(s) and mem(Mb) give the time (in seconds) and the
memory (in Mb). The last Column result is Y is the program contains the malicious
behaviors given in Column Formula, and N if not. We also compared our techniques
against translating SABPDS to ABPDS (Columns “SABPDS→ABPDS”), or translat-
ing SCTPL to CTL with regular valuations (Columns “SCTPL→CTLr”). We were able
to detect all the viruses that we considered, whereas applying the translation from S-
ABPDS to ABPDS or from SCTPL to CTL with regular valuations would run out of
memory in most of the cases, and thus cannot detect the viruses. Our tool was also
able to deduce that some benign programs are not viruses. E.g. we tried the following
benign programs: Uedit32, a fragment of Ultra Edit Text Editor software by IDM Com-
puter Solutions; Cygwin32 a fragment of the Setup software of Cygwin, a Linux-like
environment for Windows. cmd.exe is the Microsoft-supplied command-line interpreter.

Moreover, we run several experiments to check how robust are our techniques in
virus detection in case the virus writers use obfuscation techniques. To this aim, we
considered some of the viruses of Table 1, and we added several obfuscations man-
ually such as: instruction reordering (reordering the instructions inside the code and
using jump instructions so that the control flow is not changed), dead code insertion,
register renaming, splitting the code into several procedures, adding useless stack oper-
ations, etc. We tested 5 variants for each type of obfuscation of the viruses Mydoom.g,
Netsky.a, Bagle.d, Adson.1734 and Akez. The results are reported in Table 2. Our tech-
niques were able to detect all these variations, whereas the three well known and widely
used free antiviruses Avira [2], Qihoo 360 [4] and Avast [1] were not able to detect sev-
eral of these virus variations.
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