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Abstract. Pushdown systems (PDS) are well adapted to model sequential pro-
grams with (possibly recursive) procedure calls. Therefore, it is important to have
efficient model checking algorithms for PDSs. We consider in this paper CTL model
checking for PDSs. We consider the “standard” CTL model checking problem
where whether a configuration of a PDS satisfies an atomic proposition or not de-
pends only on the control state of the configuration. We consider also CTL model
checking with regular valuations, where the set of configurations in which an atomic
proposition holds is a regular language. We reduce these problems to the emptiness
problem in Alternating Büchi Pushdown Systems, and we give an algorithm to solve
this emptiness problem. Our algorithms are more efficient than the other existing al-
gorithms for CTL model checking for PDSs in the literature. We implemented our
techniques in a tool, and we applied it to different case studies. Our results are en-
couraging. In particular, we were able to find bugs in linux source code.

1 Introduction

PushDown Systems (PDS for short) are an adequate formalism to model sequential, pos-
sibly recursive, programs [10, 13]. It is then important to have verification algorithms for
pushdown systems. This problem has been intensively studied by the verification commu-
nity. Several model-checking algorithms have been proposed for both linear-time logics
[1, 13, 9, 14, 17], and branching-time logics [1, 2, 6, 24, 18, 19, 14, 17].

In this paper, we study the CTL model-checking problem for PDSs. First, we con-
sider the “standard” model-checking problem as was considered in the literature. In this
setting, whether a configuration satisfies an atomic proposition or not depends only on
the control state of the configuration, not on its stack content. This problem is known
to be EXPTIME-complete [25]. CTL corresponds to a fragment of the alternation-free
µ-calculus and of CTL*. Existing algorithms for model-checking these logics for PDSs
could then be applied for CTL model-checking. However, these algorithms either allow
only to decide whether a given configuration satisfies the formula i.e., they cannot com-
pute all the set of PDS configurations where the formula holds [5, 6, 24, 18], or have a
high complexity [19, 2, 1, 12, 11, 14, 17]. Moreover, these algorithms have not been im-
plemented due to their high complexity. Thus, there does not exist a tool for CTL model-
checking of PDSs.

In this work, we propose a new efficient algorithm for CTL-model checking for PDSs.
Our algorithm allows to compute the set of PDS configurations that satisfy a given CTL
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formula. Our procedure is more efficient than the existing model-checking algorithms for
µ-calculus and CTL* that are able to compute the set of configurations where a given
property holds [19, 2, 1, 12, 11, 14, 17]. Our technique reduces CTL model-checking to
the problem of computing the set of configurations from which an Alternating Büchi
Pushdown System (ABPDS for short) has an accepting run. We show that this set can be
effectively represented using an alternating finite automaton.

Then, we consider CTL model checking with regular valuations. In this setting, the set
of configurations where an atomic proposition holds is given by a finite state automaton.
Indeed, since a configuration of a PDS has a control state and a stack content, it is natural
that the validity of an atomic proposition in a configuration depends on both the control
state and the stack. For example, in one of the case studies we considered, we needed
to check that whenever a function call hpsb send phy config is invoked, there is a path
where call hpsb send packet is called before call hpsb send phy config returns. We need
propositions about the stack to express this property. “Standard” CTL is not sufficient. We
provide an efficient algorithm that solves CTL model checking with regular valuations for
PDSs. Our procedure reduces the model-checking problem to the problem of computing
the set of configurations from which an ABPDS has an accepting run.

We implemented our techniques in a tool for CTL model-checking for pushdown
systems. Our tool deals with both “standard” model-checking, and model-checking with
regular valuations. As far as we know, this is the first tool for CTL model-checking for
PDSs. Indeed, existing model-checking tools for PDSs like Moped [21] consider only
reachability and LTL model-checking, they don’t consider CTL. We run several experi-
ments on our tool. We obtained encouraging results. In particular, we were able to find
bugs in source files of the linux system, in a watchdog driver of linux, and in an IEEE
1394 driver of linux. We needed regular valuations to express the properties of some of
these examples.

Outline. The rest of the paper is structured as follows. Section 2 gives the basic definitions
used in the paper. In section 3, we present an algorithm for computing an alternating
automaton recognizing all the configurations from which an ABPDS has an accepting run.
Sections 4 and 5 describe the reductions from “standard” CTL model-checking for PDSs
and CTL model-checking for PDSs with regular valuations, to the emptiness problem in
ABPDS. The experiments are provided in Section 6. Section 7 describes the related work.

2 Preliminaries

2.1 The temporal logic CTL
We consider the standard branching-time temporal logic CTL. For technical reasons, we
use the operator Ũ as a dual of the until operator for which the stop condition is not
required to occur; and we suppose w.l.o.g. that formulas are given in positive normal
form, i.e., negations are applied only to atomic propositions. Indeed, each CTL formula
can be written in positive normal form by pushing the negations inside.

Definition 1. Let AP = {a, b, c, ...} be a finite set of atomic propositions. The set of CTL
formulas is given by (where a ∈ AP):

ϕ ::= a | ¬a | ϕ∧ϕ | ϕ∨ϕ | AXϕ | EXϕ | A[ϕUϕ] | E[ϕUϕ] | A[ϕŨϕ] | E[ϕŨϕ].
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The closure cl(ϕ) of a CTL formula ϕ is the set of all the subformulas of ϕ, including
ϕ. Let AP+(ϕ) = {a ∈ AP | a ∈ cl(ϕ)} and AP−(ϕ) = {a ∈ AP | ¬a ∈ cl(ϕ)}. The size
|ϕ| of ϕ is the number of elements in cl(ϕ). Let T = (S ,−→, c0) be a transition system
where S is a set of states, −→⊆ S × S is a set of transitions, and c0 is the initial state. Let
s, s′ ∈ S . s′ is a successor of s iff s −→ s′. A path is a sequence of states s0, s1, . . . such
that for every i ≥ 0, si −→ si+1. Let λ : AP → 2S be a labelling function that assigns to
each atomic proposition a set of states in S . The validity of a formula ϕ in a state s w.r.t.
the labelling function λ, denoted s |=λ ϕ, is defined inductively in Figure 1. T |=λ ϕ iff
c0 |=λ ϕ. Note that a path π satisfies ψ1Ũψ2 iff either ψ2 holds everywhere in π, or the first
occurrence in the path where ψ2 does not hold must be preceeded by a position where ψ1
holds.

s |=λ a ⇐⇒ s ∈ λ(a).
s |=λ ¬a ⇐⇒ s < λ(a).
s |=λ ψ1 ∧ ψ2 ⇐⇒ s |=λ ψ1 and s |=λ ψ2.

s |=λ ψ1 ∨ ψ2 ⇐⇒ s |=λ ψ1 or s |=λ ψ2.

s |=λ AX ψ ⇐⇒ s′ |=λ ψ for every successor s′ of s.
s |=λ EX ψ ⇐⇒ There exists a successor s′ of s s.t. s′ |=λ ψ.

s |=λ A[ψ1Uψ2] ⇐⇒ For every path of T, π = s0, s1, ..., with s0 = s,∃i ≥ 0
s.t. si |=λ ψ2 and ∀0 ≤ j < i, s j |=λ ψ1.

s |=λ E[ψ1Uψ2] ⇐⇒ There exists a path of T, π = s0, s1, ..., with s0 = s, s.t.
∃i ≥ 0, si |=λ ψ2 and ∀0 ≤ j < i, s j |=λ ψ1.

s |=λ A[ψ1Ũψ2] ⇐⇒ For every path of T, π = s0, s1, ..., with s0 = s,∀i ≥ 0 s.t. si 6|=λ ψ2,

∃0 ≤ j < i, s.t. s j |=λ ψ1.

s |=λ E[ψ1Ũψ2] ⇐⇒ There exists a path of T, π = s0, s1, ..., with s0 = s, s.t. ∀i ≥ 0 s.t. si 6|=λ ψ2,

∃0 ≤ j < i s.t. s j |=λ ψ1.

Fig. 1. Semantics of CTL

2.2 PushDown Systems

Definition 2. A PushDown System (PDS for short) is a tuple P = (P, Γ, ∆, ]), where P is
a finite set of control locations, Γ is the stack alphabet, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite
set of transition rules and ] ∈ Γ is a bottom stack symbol.

A configuration of P is an element 〈p, ω〉 of P×Γ∗. We write 〈p, γ〉 ↪→ 〈q, ω〉 instead
of ((p, γ), (q, ω)) ∈ ∆. For technical reasons, we consider the bottom stack symbol ], and
we assume w.l.o.g. that it is never popped from the stack, i.e., there is no transition rule of
the form 〈p, ]〉 ↪→ 〈q, ω〉 ∈ ∆. The successor relation{P⊆ (P × Γ∗) × (P × Γ∗) is defined
as follows: if 〈p, γ〉 ↪→ 〈q, ω〉, then 〈p, γω′〉{P 〈q, ωω′〉 for every ω′ ∈ Γ∗.

Let c be a given initial configuration of P. Starting from c, P induces the transition
system T c

P
= (P×Γ∗,{P, c). Let AP be a set of atomic propositions, ϕ be a CTL formula

on AP, and λ : AP→ 2P×Γ∗ be a labelling function. We say that (P, c) |=λ ϕ iff T c
P
|=λ ϕ.
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2.3 Alternating Büchi PushDown Systems

Definition 3. An Alternating Büchi PushDown System (ABPDS for short) is a tupleBP =

(P, Γ, ∆, F), where P is a finite set of control locations, Γ is the stack alphabet, F ⊆ P is
a finite set of accepting control locations and ∆ is a function that assigns to each element
of P × Γ a positive boolean formula over P × Γ∗.

A configuration of an ABPDS is a pair 〈p, ω〉, where p ∈ P is a control location
and ω ∈ Γ∗ is the stack content. We assume w.l.o.g. that the boolean formulas are
in disjunctive normal form. This allows to consider ∆ as a subset of (P × Γ) × 2P×Γ∗ .
Thus, rules of ∆ of the form1 〈p, γ〉 ↪→

∨n
j=1

∧m j

i=1〈p
j
i , ω

j
i 〉 can be denoted by the union

of n rules of the form 〈p, γ〉 ↪→ {〈p j
1, ω

j
1〉, ..., 〈p

j
m j , ω

j
m j〉}, where 1 ≤ j ≤ n. Let

t = 〈p, γ〉 ↪→ {〈p1, ω1〉, ..., 〈pn, ωn〉} be a rule of ∆. For every ω ∈ Γ∗, the configuration
〈p, γω〉 (resp. {〈p1, ω1ω〉, ..., 〈pn, ωnω〉}) is an immediate predecessor (resp. successor) of
{〈p1, ω1ω〉, ..., 〈pn, ωnω〉} (resp. 〈p, γω〉).

A run ρ of BP from an initial configuration 〈p0, ω0〉 is a tree in which the root is
labeled by 〈p0, ω0〉, and the other nodes are labeled by elements of P × Γ∗. If a node of ρ
is labeled by 〈p, ω〉 and has n children labeled by 〈p1, ω1〉, ..., 〈pn, ωn〉, respectively, then
necessarily, 〈p, ω〉 has {〈p1, ω1〉, ..., 〈pn, ωn〉} as an immediate successor in BP. A path
c0c1... of a run ρ is an infinite sequence of configurations such that c0 is the root of ρ and
for every i ≥ 0, ci+1 is one of the children of the node ci in ρ. The path is accepting from the
initial configuration c0 if and only if it visits infinitely often configurations with control
locations in F. A run ρ is accepting if and only if all its paths are accepting. Note that an
accepting run has only infinite paths; it does not involve finite paths. A configuration c is
accepted (or recognized) byBP iffBP has an accepting run starting from c. The language
of BP, L(BP) is the set of configurations accepted by BP.

The reachability relation =⇒BP⊆ (P×Γ∗)×2P×Γ∗ is the reflexive and transitive closure
of the immediate successor relation. Formally =⇒BP is defined as follows: (1) c =⇒BP {c}
for every c ∈ P × Γ∗, (2) c =⇒BP C if C is an immediate successor of c, (3) if c =⇒BP
{c1, ..., cn} and ci =⇒BP Ci for every 1 ≤ i ≤ n , then c =⇒BP

⋃n
i=1 Ci.

The functions PreBP, Pre∗
BP

and Pre+
BP

: 2P×Γ∗ −→ 2P×Γ∗ are defined as follows:
PreBP(C) = {c ∈ P×Γ∗ | ∃C′ ⊆ C s.t. C′ is an immediate successor of c}, (2) Pre∗

BP
(C) =

{c ∈ P × Γ∗|∃C′ ⊆ C s.t. c =⇒BP C′}, (3) Pre+
BP

(C) = PreBP ◦ Pre∗
BP

(C).

To represent (infinite) sets of configurations of ABPDSs, we use Alternating Multi-
Automata:

Definition 4. [1] Let BP = (P, Γ, ∆, F) be an ABPDS. An Alternating Multi-Automaton
(AMA for short) is a tuple A = (Q, Γ, δ, I,Q f ), where Q is a finite set of states that
contains P, Γ is the input alphabet, δ ⊆ (Q × Γ) × 2Q is a finite set of transition rules,
I ⊆ P is a finite set of initial states, Q f ⊆ Q is a finite set of final states.

A Multi-Automaton (MA for short) is an AMA such that δ ⊆ (Q × Γ) × Q.

We define the reflexive and transitive transition relation −→δ⊆ (Q×Γ∗)×2Q as follows:
(1) q

ε
−→δ {q} for every q ∈ Q, where ε is the empty word, (2) q

γ
−→δ Q′, if q

γ
−→ Q′ ∈ δ,

1 This rule represents ∆(p, γ) =
∨n

j=1
∧m j

i=1(p j
i , ω

j
i ).

4



(3) if q
ω
−→δ {q1, ..., qn} and qi

γ
−→δ Qi for every 1 ≤ i ≤ n, then q

ωγ
−→δ

⋃n
i=1 Qi.

The automaton A recognizes a configuration 〈p, ω〉 iff there exists Q′ ⊆ Q f such that
p

ω
−→δ Q′ and p ∈ I. The language of A, L(A), is the set of configurations recognized

by A. A set of configurations is regular if it can be recognized by an AMA. It is easy to
show that AMAs are closed under boolean operations and that they are equivalent to MAs.
Given an AMA, one can compute an equivalent MA by performing a kind of powerset
construction as done for the determinisation procedure. Similarly, MAs can also be used
to recognize (infinite) regular sets of configurations for PDSs.

Proposition 1. Let A = (Q, Γ, δ, I,Q f ) be an AMA. Deciding whether a configuration
〈p, ω〉 is accepted byA can be done in O(|Q| · |δ| · |ω|) time.

3 Computing the language of an ABPDS

Our goal in this section is to compute the set of accepting configurations of an Alternating
Büchi PushDown System BP = (P, Γ, ∆, F). We show that it is regular and that it can
effectively be represented by an AMA. Determining whether BP has an accepting run is a
non-trivial problem because a run ofBP is an infinite tree with an infinite number of paths
labelled by PDS configurations, which are control states and stack contents. All the paths
of an accepting run are infinite and should all go through final control locations infinitely
often. The difficulty comes from the fact that we cannot reason about the different paths of
an ABPDS independently, we need to reason about runs labeled with PDS configurations.
We proceed as follows: First, we characterize the set of configurations from whichBP has
an accepting run. Then, based on this characterization, we compute an AMA representing
this set.

3.1 Characterizing L(BP)

We give in this section a characterization of L(BP), i.e., the set of configurations from
which BP has an accepting run. Let (Xi)i≥0 be the sequence defined as follows: X0 =

P × Γ∗ and Xi+1 = Pre+(Xi ∩ F × Γ∗) for every i ≥ 0. Let YBP =
⋂

i≥0 Xi. We show that
L(BP) = YBP:

Theorem 1. BP has an accepting run from a configuration 〈p, ω〉 iff 〈p, ω〉 ∈ YBP.

To prove this result, we first show that:

Lemma 1. BP has a run ρ from a configuration 〈p, ω〉 such that each path of ρ visits
configurations with control locations in F at least k times iff 〈p, ω〉 ∈ Xk.

Intuitively, let c be a configuration in X1. Since X1 = Pre+(X0 ∩ F × Γ∗), c has a
successor C that is a subset of F×Γ∗. Thus,BP has a run starting from c whose paths visit
configurations with control locations in F at least once. Since X2 = Pre+(X1 ∩ F × Γ∗), it
follows that from every configuration in X2,BP has a run whose paths visit configurations
in X1 ∩ F × Γ∗ at least once, and thus, they visit configurations with control locations in
F at least twice. We get by induction that for every k ≥ 1, from every configuration c in
Xk, BP has a run whose paths visit configurations with control locations in F at least k
times. Since YBP is the set of configurations from which BP has a run that visits control
locations in F infinitely often, Theorem 1 follows.
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3.2 Computing L(BP)

Our goal is to compute YBP =
⋂

i≥0 Xi, where X0 = P × Γ∗ and for every i ≥ 0, Xi+1 =

Pre+(Xi ∩ F × Γ∗). We provide a saturation procedure that computes the set YBP. Our
procedure is inspired from the algorithm given in [7] to compute the winning region of a
Büchi game on a pushdown graph.

We show that YBP can be represented by an AMA A = (Q, Γ, δ, I, Q f ) whose set
of states Q is a subset of P × N ∪ {q f }, where q f is a special state denoting the final state
(Q f = {q f }). From now on, for every p ∈ P and i ∈ N, we write pi to denote (p, i).

Intuitively, to compute YBP, we will compute iteratively the different Xi’s by applying
the saturation procedure of [1]. The iterative procedure computes different automata. The
automaton computed during the iteration i uses states of the form pi having i as index.
To force termination, we use an acceleration criterion. For this, we need to define two
projection functions π−1 and πi defined as follows: For every S ⊆ P × N ∪ {q f },

π−1(S ) =


{qi | qi+1 ∈ S } ∪ {q f } if q f ∈ S or ∃q1 ∈ S ,

{qi | qi+1 ∈ S } else.

πi(S ) = {qi | ∃1 ≤ j ≤ i s.t. q j ∈ S } ∪ {q f | q f ∈ S }.

The AMAA is computed iteratively using Algorithm 1:

Algorithm 1: Computation of YBP
Input: An ABPDS BP = (P, Γ, ∆, F).

Output: An AMAA = (Q, Γ, δ, I, Q f ) that recognizes YBP.

1.Initially: Let i = 0, δ = {(q f , γ, {q f }) for every γ ∈ Γ}, and for every control state p ∈ P, p0 = q f .

2. Repeat (we call this loop loop1)

3. i := i + 1;

4. Add in δ a new transition rule pi ε
−→ pi−1, for every p ∈ F;

5. Repeat (we call this loop loop2)

6. For every 〈p, γ〉 ↪→ {〈p1, ω1〉, ..., 〈pn, ωn〉} in ∆

7. and every case where pi
k

ωk
−→δ Qk , for every 1 ≤ k ≤ n;

8. Add a new rule pi γ
−→

⋃n
k=1 Qk in δ;

9. Until No new transition rule can be added.

10. Remove from δ the transition rules pi ε
−→ pi−1, for every p ∈ F;

11. Replace in δ every transition rule pi γ
−→ R by pi γ

−→ πi(R), for every p ∈ P, γ ∈ Γ, R ⊆ Q;

12. Until i > 1 and for every p ∈ P, γ ∈ Γ, R ⊆ P × {i} ∪ {q f }; pi γ
−→ R ∈ δ⇐⇒ pi−1 γ

−→ π−1(R) ∈ δ

Let us explain the intuition behind the different lines of this algorithm. Let Ai be the
automaton obtained at step i (a step starts at Line 3). For every p ∈ P, the state pi is
meant to represent state p at step i, i.e., Ai recognizes a configuration 〈p, ω〉 iff pi ω

−→δ q f .
Let A0 be the automaton obtained after the initialization step (Line 1). It is clear that
A0 recognizes X0 = P × Γ∗. Suppose now that the algorithm is at the beginning of the
i-th iteration (loop1). Line 4 adds the ε-transition pi ε

−→ pi−1 for every control state
p ∈ F. After this step, we obtain L(Ai−1) ∩ F × Γ∗. loop2 at lines 5 − 9 is the saturation
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procedure of [1]. It computes the Pre∗ of L(Ai−1)∩F×Γ∗. Line 10 removes the ε-transition
added by Line 4. After this step, the automaton recognizes Pre+(L(Ai−1) ∩ F × Γ∗), i.e.,
Xi. Let us call Algorithm B the above algorithm without Line 11. It follows from the
explanation above that if Algorithm B terminates, it will produce YBP. However, this
procedure will never terminate if the sequence (Xi) is strictly decreasing. Consider for
example the ABPDS BP = ({q}, {γ}, ∆, {q}), where ∆ = {〈q, γ〉 ↪→ 〈q, ε〉}. Then, for every
i ≥ 0, Xi = {〈q, γiω〉 | ω ∈ γ∗}. It is clear that Algorithm B will never terminate on this
example.

The substitution at Line 11 is the acceleration used to force the termination of the
algorithm, tested at Line 12. We can show that thanks to Line 11 and to the test of Line
12, our algorithm always terminates and produces YBP:

Theorem 2. Algorithm 1 always terminates and produces YBP.

Proof (Sketch): Termination. Let us first prove the termination of our procedure. Note
that due to the substitution of Line 11, at the end of step i, states with index j < i are not
useful and can be removed. We can then suppose that at the end of step i, the automaton
Ai uses only states of index i (in addition to state q f ). Thus, the termination tested at Line
12 holds when at step i, the transitions of Ai are “the same” than those of Ai−1.

We can show that at each step i, loop2 (corresponding to the saturation procedure)
adds less transitions than at step i − 1, meaning that Ai has less transitions than Ai−1.
Intuitively, this is due to the fact that at step i, we obtain after the saturation procedure
Pre+(L(Ai−1) ∩ F × Γ∗). Since Pre+ is monotonic, and since we start at step 0 with an
automaton A0 that recognizes all the configurations P × Γ∗, we get that for i > 0, L(Ai) ⊆
L(Ai−1). More precisely, we can show by induction on i that:

Proposition 2. In Algorithm 1, for every γ ∈ Γ, p ∈ P, S ⊆ Q; at each step i ≥ 2, if
pi γ
−→ S ∈ δ, then pi−1 γ

−→ π−1(πi(S )
)
∈ δ.

Thus, the substitution of Line 11 guarantees that at each step, the number of transitions
of the automaton Ai is less than the number of transitions of Ai−1. Since the number of
transitions that can be added at each step is finite, and since the termination criterion of
Line 12 holds if the transitions of Ai are “the same” than those of Ai−1, the termination of
our algorithm is guaranteed.

Correctness. Let us now prove that our algorithm is correct, i.e., it produces YBP. As
mentionned previously, without Line 11, the algorithm above would have computed the
different Xi’s. Since YBP =

⋂
i≥0 Xi, we need to show that Line 11 does not introduce new

configurations that are not in YBP, nor remove ones that should be in YBP.
Suppose we are at step i, and let p ∈ P, γ ∈ Γ, and R ⊆ Q be such that Line 11 adds

the transition pi γ
−→ πi(R) and removes the transition pi γ

−→ R. This substitution adds a
new transition iff R contains at least one state of the form qi−1 (otherwise, πi(R) = R and
Line 11 does not introduce any change for this transition). Let then S ⊆ Q be such R =

S ∪ {qi−1}. Let us first show that this substitution does not introduce new configurations.
Let u ∈ Γ∗ such that pi γ

−→δ π
i(R)

u
−→δ q f is a new accepting run of the automaton. Then,

due to Proposition 2, we can show that there exists already (before the substitution) a run
pi γ
−→δ R

u
−→δ q f in the automaton that accepts the configuration 〈p, γu〉.
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Let us now show that the substitution above does not remove configurations that are
in YBP. Let 〈p, ω〉 be a configuration removed by the substitution above, i.e., 〈p, ω〉 is no
more recognized by Ai due to the fact that pi γ

−→ R is removed. We show that 〈p, ω〉
cannot be in YBP. Let v ∈ Γ∗ such that ω = γv and ρ = pi γ

−→δ qi−1 ∪ S
v
−→δ {q f }

is a run accepting 〈p, ω〉 whereas there is no run of the form qi v
−→δ {q f }. Suppose for

simplicity that ρ is the only run recognizing 〈p, ω〉, the same reasoning can also be applied
if this is not the case. Since pi γ

−→ qi−1 ∪ S , we can show that there exist states q1, . . . , qn,
and words ω1, . . . , ωn such that 〈p, γ〉 =⇒BP {〈q, ε〉, 〈q1, ω1〉, · · · 〈qn, ωn〉}. Then, due to
the fact that 〈p, ω〉 is removed from the automaton and that ρ is the only path accepting
〈p, ω〉, we can show that all the possible runs from the configuration 〈p, ω〉 go through the
configuration 〈q, v〉. Since 〈q, v〉 < YBP (because there is no run of the form qi v

−→δ {q f }),
BP has no accepting run from the configuration 〈q, v〉. It follows that BP cannot have an
accepting run from 〈p, ω〉.

�

Complexity: Given an AMA A with n states such that A has P as initial set of states, [23]
provides a procedure that can implement the saturation procedure loop2 to compute the
Pre∗ of A in time O(n · |∆| · 22n). Since at each step i, Algorithm 1 needs to consider only
states of the form pi and pi−1 (in addition to q f ), the number of states at each step i should
be 2|P| + 1. Thus, loop2 can be done in O(|P| · |∆| · 24|P|). Furthermore, Line 11 and the
termination condition are done in time O(|Γ| · |P| · 22|P|) and O(|Γ| · |P| · 2|P|), respectively.
We know that the number of transition rules of Ai is less than those of Ai−1. Since the
number of transition rules of the AMA is at most |Γ| · |P| · 2|P|+1, loop1 can be done at
most |Γ| · |P| · 2|P|+1 times. Putting all these estimations together, the algorithm runs in
O(|P|2 · |∆| · |Γ| · 25|P|) time.

Thus, since L(BP) = YBP, we get :

Theorem 3. Given an ABPDS BP = (P, Γ, ∆, F), we can effectively compute an AMA A
with O(|P|) states and O(|P| · |Γ| · 2|P|) transition rules that recognizes L(BP). This AMA
can be computed in time O(|P|2 · |∆| · |Γ| · 25|P|).

Example: Let us illustrate our algorithm by an ex-
ample. Consider an ABPDS BP = ({q}, {γ}, ∆,
{q}), where ∆ = {〈q, γ〉 ↪→ 〈q, ε〉}. The automa-
ton produced by Algorithm 1 is shown in Figure
2. The dashed lines denote the transitions removed

q
fq1q2

γ
γ

γ

γ
ε ε

γ

Fig. 2: The result automaton.

by Lines 10 and 11. In the first iteration, t1 = q1 ε
−→ q f is added by Line 4, the saturation

procedure (lines 5 − 9) adds two transitions q1 γ
−→ q f and q1 γ

−→ q1. Then the transition
t1 is removed by Line 10. In the second iteration, t2 = q2 ε

−→ q1 is added by Line 4.
The saturation procedure adds the transitions t3 = q2 γ

−→ q1 and q2 γ
−→ q2. Finally, t2 is

removed by Line 10 and t3 is replaced by q2 γ
−→ q2 (this transition already exists in the

automaton). Now the termination condition is satisfied and the algorithm terminates. In
this case, BP has no accepting run.
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Efficient implementation of Algorithm 1. We show that we can improve the complexity
of Algorithm 1 as follows:

Improvement 1. For every q ∈ Q and γ ∈ Γ, if t1 = q
γ
−→ Q1 and t2 = q

γ
−→ Q2 are

two transitions in δ such that Q1 ⊆ Q2, then remove t2. This means that ifA contains two
transitions t1 = p

γ
−→ {q1, q2, q3} and t2 = p

γ
−→ {q1, q2}, then we can remove t1 without

changing the language of A. Indeed, if a path q
ω
−→δ q f uses the transition rule t1, then

there must be necessarily a path q
ω
−→δ q f that uses the transition rule t2 instead of t1.

Improvement 2. Each transition qi γ
−→ R added by the saturation procedure will be

substituted by qi γ
−→ πi(R) in Line 11. Transitions of the form qi γ

−→ {qi
1, q

i−1
1 } ∪ R and

qi γ
−→ {qi−1

1 } ∪ R have the same substitution qi γ
−→ {qi

1} ∪ π
i(R). We show that each

transition qi γ
−→ {qi

1, q
i−1
1 } ∪ R can be replaced by qi γ

−→ {qi−1
1 } ∪ R in the saturation

procedure (i.e., during loop2). Moreover, we show that if both t1 = qi γ
−→ {qi−1

1 , ..., qi−1
n } ∪

R and t2 = qi γ
−→ {qi

1, ..., q
i
n} ∪ R exist during loop2, then t2 can be removed. This is due

to the fact that they both have the same substitution rule.

4 CTL Model-Checking for PushDown Systems

We consider in this section “standard” CTL model checking for pushdown systems as
considered in the literature, i.e., the case where whether an atomic proposition holds for
a given configuration c or not depends only on the control state of c, not on its stack.
Let P = (P, Γ, ∆, ]) be a pushdown system, c0 its initial configuration, AP a set of atomic
propositions, ϕ a CTL formula, f : AP → 2P a function that associates atomic proposi-
tions to sets of control states, and λ f : AP→ 2P×Γ∗ a labelling function such that for every
a ∈ AP, λ f (a) = {〈p, ω〉 | p ∈ f (a), ω ∈ Γ∗}. We provide in this section an algorithm to
determine whether (P, c0) |=λ f ϕ. We proceed as follows: Roughly speaking, we compute
an Alternating Büchi PushDown System BP that recognizes the set of configurations c
such that (P, c) |=λ f ϕ. Then (P, c0) |=λ f ϕ holds iff c0 ∈ L(BP). This can be effectively
checked due to Theorem 3 and Proposition 1.

LetBPϕ = (P′, Γ, ∆′, F) be the ABPDS defined as follows: P′ = P×cl(ϕ); F = {[p, a] |
a ∈ cl(ϕ) ∩ AP and p ∈ f (a)} ∪ {[p,¬a] | ¬a ∈ cl(ϕ), a ∈ AP and p < f (a)} ∪ P × clŨ(ϕ),
where clŨ(ϕ) is the set of formulas of cl(ϕ) of the form E[ϕ1Ũϕ2] or A[ϕ1Ũϕ2]; and ∆′
is the smallest set of transition rules such that for every control location p ∈ P, every
subformula ψ ∈ cl(ϕ), and every γ ∈ Γ, we have:

1. if ψ = a, a ∈ AP and p ∈ f (a); 〈[p, ψ], γ〉 ↪→ 〈[p, ψ], γ〉 ∈ ∆′,
2. if ψ = ¬a, a ∈ AP and p < f (a); 〈[p, ψ], γ〉 ↪→ 〈[p, ψ], γ〉 ∈ ∆′,
3. if ψ = ψ1 ∧ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∧ 〈[p, ψ2], γ〉 ∈ ∆′,
4. if ψ = ψ1 ∨ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∨ 〈[p, ψ2], γ〉 ∈ ∆′,
5. if ψ = EXψ1; 〈[p, ψ], γ〉 ↪→

∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′,

6. if ψ = AXψ1; 〈[p, ψ], γ〉 ↪→
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′,

7. if ψ = E[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′,

8. if ψ = A[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′,

9. if ψ = E[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′,
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10. if ψ = A[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′.

The ABPDS BPϕ above can be seen as the “product” of P with the formula ϕ. Intu-
itively, BPϕ has an accepting run from 〈[p, ψ], ω〉 if and only if the configuration 〈p, ω〉
satisfies ψ. Let us explain the intuition behind the different items defining ∆′.

Let ψ = a ∈ AP. If p ∈ f (a) then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ. Thus, BPϕ
should accept 〈[p, a], ω〉, i.e., have an accepting run from 〈[p, a], ω〉. This is ensured by
Item 1 that adds a loop in 〈[p, a], ω〉, and the fact that [p, a] ∈ F.

Let ψ = ¬a, where a ∈ AP. If p < f (a) then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ.
Thus, BPϕ should accept 〈[p,¬a], ω〉, i.e., have an accepting run from 〈[p,¬a], ω〉. This
is ensured by Item 2 and the fact that [p,¬a] ∈ F.

Item 3 expresses that if ψ = ψ1 ∧ ψ2, then for every ω ∈ Γ∗, BPϕ has an accepting
run from 〈[p, ψ1 ∧ψ2], ω〉 iff BPϕ has an accepting run from 〈[p, ψ1], ω〉 and 〈[p, ψ2], ω〉;
meaning that 〈p, ω〉 satisfies ψ iff 〈p, ω〉 satisfies ψ1 and ψ2. Item 4 is similar to Item 3.

Item 5 means that if ψ = EXψ1, then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff there
exists an immediate sucessor 〈p′, ω′〉 of 〈p, ω〉 such that 〈p′, ω′〉 satisfies ψ1. Thus, BPϕ
should have an accepting run from 〈[p, ψ], ω〉 iff it has an accepting run from 〈[p′, ψ1], ω′〉.
Similarly, item 6 states that if ψ = AXψ1, then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff
〈p′, ω′〉 satisfies ψ1 for every immediate sucessor 〈p′, ω′〉 of 〈p, ω〉.

Item 7 expresses that if ψ = E[ψ1Uψ2], then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff
either it satisfies ψ2, or it satisfies ψ1 and there exists an immediate sucessor 〈p′, ω′〉 of
〈p, ω〉 such that 〈p′, ω′〉 satisfies ψ. Item 8 is similar to Item 7.

Item 9 expresses that if ψ = E[ψ1Ũψ2], then for every ω ∈ Γ∗, 〈p, ω〉 satisfies ψ iff
it satisfies ψ2, and either it satisfies also ψ1, or it has a successor that satisfies ψ. This
guarantees that ψ2 holds either always, or until both ψ1 and ψ2 hold. The fact that the state
[p, ψ] is in F ensures that paths where ψ2 always hold are accepting. The intuition behind
Item 10 is analogous.

Formally, we can show that:

Theorem 4. Let P = (P, Γ, ∆, ]) be a PDS, f : AP −→ 2P a labelling function, ϕ a CTL
formula, and 〈p, ω〉 a configuration of P. Let BPϕ be the ABPDS computed above. Then,
(P, 〈p, ω〉) |=λ f ϕ iff BPϕ has an accepting run from the configuration 〈[p, ϕ], ω〉.

It follows from Theorems 3 and 4 that:

Corollary 1. Given a PDS P = (P, Γ, ∆, ]), a labeling function f : P −→ 2AP, and a CTL
formula ϕ, we can construct an AMA A in time O(|P|2 · |ϕ|3 · (|P| · |Γ| + |∆|) · |Γ| · 25|P||ϕ|)
such that for every configuration 〈p, ω〉 of P, (P, 〈p, ω〉) |=λ f ϕ iff the AMAA recognizes
the configuration 〈[p, ϕ], ω〉.

The complexity follows from the complexity of Algorithm 1 and the fact that BPϕ
has O(|P||ϕ|) states and O

(
(|P||Γ| + |∆|)|ϕ|

)
transitions.

5 CTL Model-Checking for PushDown Systems with regular
valuations

So far, we considered the “standard” model-checking problem for CTL, where the validity
of an atomic proposition in a configuration c depends only on the control state of c, not
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on the stack. In this section, we go further and consider an extension where the set of
configurations in which an atomic proposition holds is a regular set of configurations.

Let P = (P, Γ, ∆, ]) be a pushdown system, c0 its initial configuration, AP a set of
atomic propositions, ϕ a CTL formula, and λ : AP → 2P×Γ∗ a labelling function such
that for every a ∈ AP, λ(a) is a regular set of configurations. We say that λ is a regular
labelling. We give in this section an algorithm that checks whether (P, c0) |=λ ϕ. We
proceed as previously: Roughly speaking, we compute an ABPDS BP′ϕ such that BP′ϕ
recognizes a configuration c iff (P, c) |=λ ϕ. Then (P, c0) satisfies ϕ iff c0 is accepted by
BP′ϕ. As previously, this can be checked using Theorem 3 and Proposition 1.

For every a ∈ AP, since λ(a) is a regular set of configurations, let Ma =

(Qa, Γ, δa, Ia, Fa) be a multi-automaton such that L(Ma) = λ(a), and M¬a =

(Q¬a, Γ, δ¬a, I¬a, F¬a) such that L(M¬a) = P × Γ∗ \ λ(a) be a multi-automaton that rec-
ognizes the complement of λ(a), i.e., the set of configurations where a does not hold.
Since for every a ∈ AP and every control state p ∈ P, p is an initial state of Qa and Q¬a;
to distinguish between all these initial states, for every a ∈ AP, we will denote in the
following the initial state corresponding to p in Qa (resp. in Q¬a) by pa (resp. p¬a).

Let BP′ϕ = (P′′, Γ, ∆′′, F′) be the ABPDS defined as follows2: P′′ = P × cl(ϕ) ∪⋃
a∈AP+(ϕ) Qa ∪

⋃
a∈AP−(ϕ) Q¬a; F′ = P × clŨ(ϕ) ∪

⋃
a∈AP+(ϕ) Fa ∪

⋃
a∈AP−(ϕ) F¬a; and ∆′′

is the smallest set of transition rules such that for every control location p ∈ P, every
subformula ψ ∈ cl(ϕ), and every γ ∈ Γ, we have:

1. if ψ = a, a ∈ AP; 〈[p, ψ], γ〉 ↪→ 〈pa, γ〉 ∈ ∆
′′,

2. if ψ = ¬a, a ∈ AP ; 〈[p, ψ], γ〉 ↪→ 〈p¬a, γ〉 ∈ ∆
′′,

3. if ψ = ψ1 ∧ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∧ 〈[p, ψ2], γ〉 ∈ ∆′′,
4. if ψ = ψ1 ∨ ψ2; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ1], γ〉 ∨ 〈[p, ψ2], γ〉 ∈ ∆′′,
5. if ψ = EXψ1; 〈[p, ψ], γ〉 ↪→

∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′′,

6. if ψ = AXψ1; 〈[p, ψ], γ〉 ↪→
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ1], ω〉 ∈ ∆′′,

7. if ψ = E[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′′,

8. if ψ = A[ψ1Uψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆(〈[p, ψ1], γ〉 ∧ 〈[p′, ψ], ω〉) ∈ ∆′′,

9. if ψ = E[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∨
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′′,

10. if ψ = A[ψ1Ũψ2]; 〈[p, ψ], γ〉 ↪→ 〈[p, ψ2], γ〉 ∧ (〈[p, ψ1], γ〉 ∨
∧
〈p,γ〉↪→〈p′ ,ω〉∈∆〈[p′, ψ], ω〉) ∈ ∆′′.

Moreover:

11. for every transition q1
γ
−→ q2 in (

⋃
a∈AP+(ϕ) δa) ∪ (

⋃
a∈AP−(ϕ) δ¬a); 〈q1, γ〉 ↪→ 〈q2, ε〉 ∈

∆′′,
12. for every q ∈ (

⋃
a∈AP+(ϕ) Fa) ∪ (

⋃
a∈AP−(ϕ) F¬a); 〈q, ]〉 ↪→ 〈q, ]〉 ∈ ∆′′.

The ABPDSBP′ϕ has an accepting run from 〈[p, ψ], ω〉 if and only if the configuration
〈p, ω〉 satisfies ψ according to the regular labellings Ma’s. Let us explain the intuition
behind the rules above. Let p ∈ P, ψ = a ∈ AP, and ω ∈ Γ∗. The ABPDS BP′ϕ should
accept 〈[p, a], ω〉, iff 〈p, ω〉 ∈ L(Ma). To check this, BP′ϕ goes to state pa, the initial
state corresponding to p in Ma (Item 1); and then, from this state, it checks whether ω is
accepted by Ma. This is ensured by Items 11 and 12. Item 11 allows BP′ϕ to mimic a run

of Ma on ω: if BP′ϕ is in state q1 with γ on top of its stack, and if q1
γ
−→ q2 is a rule in δa,

then BP′ϕ moves to state q2 while popping γ from the stack. Popping γ allows to check

2 AP+(ϕ) and AP−(ϕ) are as defined in Section 2.1.
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the rest of the word. The configuration is accepted if the run (with label ω) in Ma reaches
a final state, i.e., ifBP′ϕ reaches a state q ∈ Fa with an empty stack, i.e., a stack containing
only the bottom stack symbol ]. Thus, Fa is in F′′. Since all the accepting runs of BP′ϕ
are infinite, we add a loop on every configuration in control state q ∈ Fa and having ] as
content of the stack (Item 12).

The intuition behind Item 2 is similar. This item applies for ψ of the from ¬a. Items
3–10 are similar to Items 3–10 in the construction underlying Theorem 4. We get:

Theorem 5. (P, 〈p, ω〉) |=λ ϕ iff BP′ϕ has an accepting run from the configuration
〈[p, ϕ], ω〉.

From this theorem and Theorem 3, it follows that:

Corollary 2. Given a PDS P = (P, Γ, ∆, ]), a regular labelling function λ, and a CTL
formula ϕ, we can construct an AMA A such that for every configuration 〈p, ω〉 of P,
(P, 〈p, ω〉) |=λ ϕ iff the AMA A recognizes the configuration 〈[p, ϕ], ω〉. This AMA can
be computed in time O(|P|3 · |Γ|2 · |ϕ|3 · k2 · |∆| · d · 25(|P||ϕ|+k)), where k =

∑
a∈AP+(ϕ) |Qa| +∑

a∈AP−(ϕ) |Q¬a| and d =
∑

a∈AP+(ϕ) |δa| +
∑

a∈AP−(ϕ) |δ¬a|.

The complexity follows from the complexity of Algorithm 1 and the fact that BP′ϕ
has O(|P||ϕ| + k) states and O

(
(|P||Γ| + |∆|)|ϕ| + d

)
transitions.

Remark 1. Note that to improve the complexity, we represent the regular valuations Ma’s
using AMAs instead of MAs. This prevents the exponential blow-up when complement-
ing these automata to compute M¬a.

6 Experiments

We implemented all the algorithms presented in the previous sections in a tool. As far
as we know, this is the first tool for CTL model-checking for PDSs. We applied our tool
to the verification of sequential programs. Indeed, PDSs are well adapted to model se-
quential (possibly recursive) programs [10, 13]. We carried out several experiments. We
obtained interesting results. In particular, we were able to find bugs in linux drivers. Our
results are reported in Figure 3. Column formula size gives the size of the formula. Col-
umn time(s) and mem(kb) give the time (in seconds) and memory (in kb). Column Recu.
gives the number of iterations of loop1. The last Column result gives the result whether
the formula is satisfied or not (Y is satisfied, otherwise N). The first eleven lines of the
table describe experiments done to evaluate Algorithm 1. that computes the set of con-
figurations from which an ABPDS has an accepting run. The second part of the table
describes experiments for “standard” CTL model-checking in which most of the speci-
fications cannot be expressed in LTL. The last part considers CTL model-checking with
regular valuations.

Plotter controls a plotter that creates random bar graphs [21]. We checked three CTL
properties for this example (Plotter1, Plotter2 and Plotter3). ATM is an automatic teller
machine controller. We checked that if the pincode is correct, then the ATM will pro-
vide money (ATM1), and otherwise, it will set an alarm (ATM2). ATM3 checks that
the ATM gives the money only if the pincode is correct, and if it is accessed from the
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Examples
|P | + |Γ| Formula

Recu Time(s) Mem(kb) Result
+|∆| size

A
lg

o
rith

m
1

1 3+3+4 - 3 0 22.34 Y
2 17+5+24 - 4 0 33.23 N
3 73+5+73 - 4 0.02 128.28 Y
4 75+6+75 - 5 0.02 81.36 N
5 3+4+4 - 4 0 22.36 N
6 3+4+5 - 3 0 21.54 Y
7 3+4+4 - 3 0 20.11 Y
8 3+4+4 - 4 0 27.40 Y
9 74+6+76 - 5 0.02 87.54 Y
10 17+5+24 - 3 0 28.46 Y
11 18+5+28 - 3 0 26.15 Y

S
ta

n
d
a
rd

Plotter.1 1+19+24 2 3 0.02 41.56 Y
Plotter.2 1+19+24 2 3 0 43.52 N
Plotter.3 1+19+24 14 9 0.03 241.32 Y
ATM.1 2+18+45 8 6 0.03 169.64 Y
ATM.2 2+18+45 10 6 0.03 192.53 Y
Lock.1 6+37+82 7 11 0.11 387.15 Y
Lock.2 6+37+82 7 11 0.11 379.46 N

Lock-err 6+37+82 3 9 0.00 186.52 N
M-WO.1 1+7+12 6 2 0 40.20 Y
M-WO.2 1+7+12 6 7 0 37.28 N

File.1 1+5+9 2 3 0 34.77 Y
File.2 1+5+9 2 4 0.02 32.51 N

W.G.C. 16+1+40 23 2 0.05 202.01 Y
btrfs/file.c 2+14+20 3 10 0 64.32 N

btrfs/file.c-fixed 2+15+22 3 9 0.02 82.52 Y
bluetooth 32+12+294 5 8 0.12 821.03 N
w83627ehf 1+20+20 5 9 0.02 132.76 N

w83627ehf-fixed 1+21+22 5 4 0.03 121.69 Y
w83697ehf 1+56+57 6 11 0.35 394.61 Y
advantech 2+16+31 7 6 0.05 120.41 Y

at91rm9200 4+15+64 7 5 0.06 234.42 N
at91rm9200-fixed 4+16+67 7 6 0.12 255.62 Y

at32ap700x 4+25+105 7 8 0.15 356.04 N
at32ap700x-fixed 4+25+109 7 9 0.22 334.42 Y

pcf857x 1+98+106 10 18 0.23 541.35 Y

R
e
g
u
la

r
V

a
lu

a
tio

n

ATM.3 2+18+45 8 6 0.20 352.47 Y
File.3 1+5+9 5 5 0 33.21 Y
RSM1 1+8+11 25 4 0.06 438.23 Y
RSM2 1+8+12 30 4 0.48 1231.45 Y
RSM3 1+11+17 45 4 12.11 6206.73 Y
RSM4 1+11+18 45 4 0.72 1269.26 Y
RSM5 1+11+16 35 4 12.14 6212.2 Y

ieee1394 core 1 1+104+108 12 14 0.20 413.69 Y
ieee1394 core 2 1+104+108 13 14 0.19 422.17 Y
ieee1394 core 3 1+104+108 14 17 0.19 438.42 N
ieee1394 core 4 1+104+109 14 14 0.19 414.27 Y

Fig. 3. The performance of our tool.
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main session. Regular valuations are needed to express this property. Lock is a lock-
unlock program. We checked different properties that ensure that the program is correct.
Lock-err is a buggy version of the program. M-WO is a Micro-Wave Oven controller.
We checked that the oven will stop once it is hot, and that it cannot continue heating
forever. File is a file management program. W.G.C. checks to solve the Wolf, Goat and
Cabbage problem. btrfsfile.c models the source file file.c from the linux btrfs file system.
We found a lock error in this file. Bluetooth is a simplified model of a Bluetooth driver
[20]. We also found an error in this system. w83627ehf, w83697ehf and advantech are
watchdog linux drivers. at91rm9200 and at32ap700x are Real Time Clock drivers for
linux. pcf857x corresponds also to a driver. IEEE1394 is the IEEE 1394 driver in Linux.
As described in Figure 3, we found errors in some of these drivers. We needed regular
valuations to express the properties of the IEEE 1394 driver. For example, we needed
to check that whenever a function call hpsb send phy config is invoked, there is a path
where call hpsb send packet is called before call hpsb send phy config returns. We need
propositions about the stack to express this property. “Standard” CTL is not sufficient.
RSM are examples written by us to check the efficiency of the regular valuations part of
our tool.

7 Related Work

Alternating Büchi Pushdown Systems can be seen as non-deterministic Büchi Pushdown
Systems over trees. Emptiness of non-deterministic Büchi Pushdown Systems over trees
is solved in triple exponential time by Harel and Raz [15]. Our algorithm is less com-
plex. [2] considers the emptiness problem in Alternating Parity Pushdown Automata. The
emptiness problem of nondeterministic parity pushdown tree automata is investigated in
[16, 3, 4]. ABPDSs can be seen as a subclass of these Automata. For ABPDSs, our al-
gorithm is more general than the ones in these works since it allows to characterize and
compute the set of configurations from which the ABPDS has an accepting run, whereas
the other algorithms allow only to check emptiness

Model-checking pushdown systems against branching time temporal logics has al-
ready been intensively investigated in the literature. Several algorithms have been pro-
posed. Walukiewicz [25] showed that CTL model checking is EXPTIME-complete for
PDSs. The complexity of our algorithm matches this bound. CTL corresponds to a frag-
ment of the alternation-free µ-calculus and of CTL*. Model checking full µ-calculus for
PDSs has been considered in [5, 6, 24, 18]. These algorithms allow only to determine
whether a given configuration satisfies the property. They cannot compute the set of all
the configurations where the formula holds. As far as CTL is concerned, our algorithm is
more general since it allows to compute a finite automaton that characterizes the set of all
such configurations. Moreover, the complexity of our algorithm is comparable to the ones
of [5, 6, 24, 18] when applied to CTL, it is even better in some cases.

[19, 17] considers the global model-checking µ-calculus problem for PDSs, i.e., they
compute the set of configurations that satisfy the formula. They reduce this problem
to the membership problem in two-way alternating parity tree automata. [17] consid-
ers also µ-calculus model-checking with regular valuations. These algorithms are more
complex, technically more complicated and less intuitive than our procedure. Indeed,
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the complexity of [19, 17] is (|ϕ| · |P| · |∆| · |Γ|)O(|P|·|∆|·|ϕ|)2
, whereas our complexity is

O(|P|2 · |ϕ|3 · (|P| · |Γ| + |∆|) · |Γ| · 25|P||ϕ|).
In [1], Bouajjani et al. consider alternating pushdown systems (without the Büchi ac-

cepting condition). They provide an algorithm to compute a finite automaton representing
the Pre∗ of a regular set of configurations for these systems. We use this procedure in
loop2 of Algorithm 1. [23] showed how to efficiently implement this procedure. We used
the ideas in [23] while implementing Algorithm 1. In their paper, Bouajjani et al. ap-
plied their Pre∗ algorithm to compute the set of PDS configurations that satisfy a given
alternation-free µ-calculus formula. Their procedure is more complex than ours. It is ex-
ponential in |P| · |ϕ|2 whereas our algorithm is exponential only in |P| · |ϕ|, where |P| is the
number of states of the PDS and |ϕ| is the size of the formula.

It is well known that the model-checking problem for µ-calculus is polynomially re-
ducible to the problem of solving parity games. Parity games for pushdown systems are
considered in [8, 22] and are solved in time exponential in (|P||ϕ|)2. As far as CTL model-
checking is concerned, our method is simpler, less complex, and more intuitive than these
algorithms.

Model checking CTL* for PDS is 2EXPTIME-complete (in the size of the formula)
[2]. Algorithms for model-checking CTL* specifications for PDSs have been proposed in
[14, 12, 11, 2]. [14] considers also CTL* model checking with regular valuations. When
applied to CTL formulas, these algorithms are more complex than our techniques. They
are double exponential in the size of the formula and exponential in the size of the system;
whereas our procedure is only exponential for both sizes (the formula and the system).

LTL model-checking with regular valuations was considered in [12, 11]. Their algo-
rithm is based on a reduction to the “standard” LTL model-checking problem for PDSs.
The reduction is done by performing a kind of product of the PDS with the different
regular automata representing the different constraints on the stack. Compared to these
algorithms, our techniques for CTL model-checking with regular valuations are direct, in
the sense that they do not necessitate to make the product of the PDS with the different
automata of the regular constraints.
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